Manuscripts

Human Induced Pluripotent Stem Cell Derived Cardiomyocyte Tissue Engineered Patch Improves Left Ventricular Systolic/Diastolic Function and Electro-Mechanical Coupling in Rats with Heart Failure. Lancaster JJ, Juneman E, Sanchez P,  Weigand K, Moukabary T, LaHood N, Pandey A, Chinyere IR, Stansifer M, Daugherty S, Bahl JJ, Goldman S.  2016 – Submitted.

 

An electrically coupled tissue-engineered cardiomyocyte scaffold improves cardiac function in rats with chronic heart failure.  Lancaster JJ, Juneman E, Arnce SA, Johnson NM, Qin Y, Witte R, Thai H, Kellar RS, Ek Vitorin J, Burt J, Gaballa MA, Bahl JJ, Goldman S. J Heart Lung Transplant. 2014 Apr;33(4):438-45. www.ncbi.nlm.nih.gov/pubmed/24560982

 

Viable fibroblast matrix patch induces angiogenesis and increases myocardial blood flow in heart failure after myocardial infarction. Lancaster JJ, Juneman E, Hagerty T, Do R, Hicks M, Meltzer K, Standley P, Gaballa M, Kellar R, Goldman S, Thai H. Tissue Eng Part A. 2010 Oct;16(10):3065-73.www.ncbi.nlm.nih.gov/pubmed/20486785

 

Implantation of a three-dimensional fibroblast matrix improves left ventricular function and blood flow after acute myocardial infarction. Thai HM, Juneman E, Lancaster J, Hagerty T, Do R, Castellano L, Kellar R, Williams S, Sethi G, Schmelz M, Gaballa M, Goldman S. Cell Transplant. 2009;18(3):283-95. www.ncbi.nlm.nih.gov/pubmed/19558777

 

Abstracts

Implantation of an Induced Pluripotent Stem Cell Derived Cardiomyocyte Tissue Engineered Patch Improves Left Ventricular Function and Electro-Mechanical Coupling in Rats with Heart Failure Jordan J. Lancaster, Amitabh Pandey, Kyle Weigand, Joseph Bahl, Elizabeth Juneman, Steven Goldman Journal of Cardiac Failure, 2016, Vol. 22, Issue 8, S123 http://www.onlinejcf.com/article/S1071-9164(16)30508-5/pdf  

 

Induced Pluripotent Stem Cell Derived Cardiomyocyte Scaffold Improves Electro-Mechanical Coupling and Left Ventricular Function in Rats With Heart Failure Jordan J. Lancaster, Elizabeth Juneman, Pablo Sanchez, Kyle Weigand, Talal Moukabary, Nicole Lahood, Joseph J. Bahl, Steven Goldman Journal of Cardiac Failure, 2015, Vol. 21, Issue 8, S92 http://www.onlinejcf.com/article/S1071-9164(15)00474-1/pdf

 

Implantation of an Electrically Coupled Cardiomyocyte Scaffold Improves Left Ventricular Ejection Fraction in Rats 18 Weeks after Implantation Jordan J. Lancaster, Elizabeth Juneman, Nicole Lahood, Kyle Weigand, Russell Witte, Joseph Bahl, Steven Goldman Journal of Cardiac Failure, 2013, Vol. 19, Issue 8, S60 http://www.onlinejcf.com/article/S1071-9164(13)00384-9/pdf  

 

Electrical Coupling of a Biological Active Cardiomyocyte Patch Elizabeth Juneman, Jordan Lancaster, Russell Witte, Joseph Bahl, Steven Goldman Journal of Cardiac Failure, 2012, Vol. 18, Issue 8, S41 http://www.onlinejcf.com/article/S1071-9164(12)00320-X/pdf  

 

Implantation of a Cardiomyocyte Scaffold Improves Left Ventricular Ejection Fraction in Rats 18 Weeks after Implantation Jordan J. Lancaster, Elizabeth Juneman, Joseph Bahl, Steven Goldman Journal of Cardiac Failure, 2012, Vol. 18, Issue 8, S12 http://www.onlinejcf.com/article/S1071-9164(12)00218-7/pdf  

 

Scaffold Delivery of Neonatal Cardiomyocyte Results in Prolonged Cellular Survival and Improvements in Left Ventricular Function in Rats with Chronic Heart Failure Jordan J. Lancaster, Elizabeth Juneman, Nicholle M. Johnson, Joseph J. Bahl, Steven Goldman Journal of Cardiac Failure, 2011, Vol. 17, Issue 8, S38 http://www.onlinejcf.com/article/S1071-9164(11)00381-2/pdf  

 

In Vivo Evaluation of a Biologically Active Cardiomyocyte Seeded Scaffold Jordan J. Lancaster, Sarah A. Arnce, Nicholle M. Johnson, Elizabeth Juneman, Hoang Thai, Robert S. Kellar, Jose Ek Vitorin, Janis Burt, and others Journal of Cardiac Failure, 2010, Vol. 16, Issue 8, S45http://www.onlinejcf.com/article/S1071-9164(10)00421-5/pdf

 

Construction of a Spontaneously Contracting Biologically Active Cardiomyocyte Scaffold Jordan J. Lancaster, Nicholle M. Johnson, Elizabeth Juneman, Hoang M. Thai, Joseph Bahl, Steven Goldman Journal of Cardiac Failure, 2009 Vol. 15, Issue 6, S44–S45http://www.onlinejcf.com/article/S1071-9164(09)00345-5/pdf

Groundbreaking

 

MyCardia™ is engineered using induced pluripotent stem cells (iPSCs), which were recognized with the Nobel Prize in Physiology or Medicine (2012).

Synergistic

 

MyCardia™ behaves like cardiac tissue and mimics key molecular attributes of the heart. MyCardia™ is comprised of multiple cell types. Each provides a unique therapeutic role that synergistically repairs the heart.

Biologically Active

 

MyCardia™ is the future of regenerative medicine for the heart. MyCardia™ stimulates the body's repair mechanisms to grow new blood vessels and results in development of new cardiac tissue in treated areas.